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Enacted theories of consciousness conjecture that perception and 
cognition arise from an active experience of the regular relations that 
tie together sensory stimulation and associated motor actions [1,2]. By 
employing the technique of sensory substitution [3] and sensory aug-
mentation [4] previous experiments explored this assumption. In the 
latter study the sensory augmentation device delivered global orienta-
tion information by mapping directional information of a compass to a 
set of vibrators, activating the element pointing north [4]. Here we use 
it to investigate the impact of newly supplied directional signals on cor-
tical plasticity, sensory processing and spatial cognition.  

The training belts consisted of 30 piezoelectric, vibrotactile ac-
tuators, a 3DM GX3 compass, a control-box and battery packs. They 
were to be worn by the subjects during all waking time. A dedicated 
MRI-compatible belt was based on identical piezoelectric vibrators. 
Ten subjects (age 19-32y, four female, one control) were wearing the 
belt during all waking hours over a period of six weeks. We compared 
belt-on and belt-off conditions in a series of measurements including 
homing, multimodal integration, nystagmography, sleep-EEG, fMRI, 
and subjective methods before, during and after training.  



(1) In the homing task using on polygons of varying complexity 
we observe a slight reduction of the systematic error and a larger re-
duction of the stochastic error in belt-on condition after the training pe-
riod. (2) Integration of the newly supplied signals with visual informa-
tion in a psychophysical task was rather limited and just noticeable 
differences of rotation (yaw) were surprisingly high in belt-off as well as 
in belt-on condition. (3) Nystagmography demonstrated an increase of 
the time constant of per-rotatory nystagmus (slow phase) after training 
in the belt-on condition as compared to the belt-off condition indicating 
a firm integration in sensory processing. (4) Sleep-EEG uncovered an 
increase of REM-sleep during the early training phase. In contrast, no 
such change is observed in stage 3 sleep. (5) Most areas that were 
reported in a previous fMRI study on navigation [5] could be replicated 
in all our subjects. Furthermore, we observe widespread cortical acti-
vation in belt-on condition after training as compared to the pre-training 
baseline. (6) Subjective reports indicate that by training with the feel-
space belt the scope of perceived space grows wider and includes 
areas that are not within reach or directly visible; subjects feel more 
secure in known as well as previously unknown environments; and 
navigational abilities improve and emphasize an egocentric reference 
frame.  

The data provide evidence for an integration of the newly sup-
plied signals in sensory integration (homing, nystagmography), cortical 
processing (sleep-EEG, fMRI) and spatial cognition (subjective meth-
ods). However, further analysis is needed to elucidate significant indi-
vidual variations.  
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